<span>(а+4)×а+6/а^2-16×а-6/а-4
a(a+4)-16a-4-6/а+6^2/a^2
(a^4-12a^3-4a^2-6a+6)/а^2</span>
√3 - √2 ⁴√3² - ⁴√2² (⁴√3 - ⁴√2)*(⁴√3+⁴√2)
----------- = ------------------ = ------------------------------- = ⁴√3 - ⁴√2
⁴√3+⁴√2 ⁴√3+⁴√2 (⁴√3+⁴√2)
19
--------------------------- - ∛10-∛9 =
∛100 -∛90 +∛81
19
--------------------------- - (∛10 +∛9) =
∛100 -∛90 +∛81
19 - (∛10 +∛9)*(∛10² -∛90 +∛9²)
-------------------------------------------------- =
∛10² -∛90 +∛9²
19 - (∛10³ +∛9³) 19-(10+9) 0
--------------------------------- = -------------------------- = ---------------------- =0
∛10² -∛90 +∛9² ∛10² -∛90 +∛9² ∛10² -∛90 +∛9²
∛56=∛7*8 =∛7*2³ =2*∛7
⁴√(625а⁴b) =⁴√(5⁴а⁴b) =5a*⁴√b
⁴√(32x⁴y⁵)= ⁴√(2⁵x⁴y⁵) =⁴√((2xy)⁴2y)= - 2xy*⁴√2y (x<0)
5∛2 =∛(5³*2) =∛250
2b⁴√3a=⁴√3a*2⁴b⁴ =⁴√(48*a*b⁴)
3y ⁴√2x = ⁴√(2x*3⁴*(-y)⁴) = ⁴√(162x*y⁴)
1) x²+3x-4 < 0
x²+4x-x-4 < 0
x(x+4)-(x+4) < 0
(x-1)(x+4) < 0
____+____-4____-____1____+____
x ∈ (-4; 1)
2) 4x²-8x ≥ 0
4x(x-2) ≥ 0
x(x-2) ≥ 0
____+____0____-____2____+____
x ∈ (-∞; 0] ∪ [2; ∞)
3) x²-6x+10 > 0
D = -1 < 0 =>
xв = -b/2a = 6/2 = 3
yв = 9 - 18 + 10 = 1 =>
x ∈ (-∞; ∞)
4) x²-10x+25 ≤ 0
(x-5)² ≤ 0
____+____5____+____
x ∈ {5}
5) (x+2)(x-3) > 0
____+____-2____-____3____+____
x ∈ (-∞; -2) ∪ (3; ∞)
6) (4x-1)(x+2) ≥ 9
4x²+8x-x-2-9 ≥ 0
4x²+7x-11 ≥ 0
(x+2.75)(x-1) ≥ 0
____+____-2.75____-____1____+____
x ∈ (-∞; -2.75] ∪ [1; ∞)