Найдем гипотенузу треугольника АВС по Пифагору.
АВ=√((АС²+ВС²) или АВ=√(2704+16)=√2720 =4√170.
Косинус угла А равен отношению прилежащего катета к гипотенузе или
CosA=52/(4√170).
Внешний угол при вершине А треугольника - это смежный угол с углом А
и равен 180 - А.
Следовательно, по формуле приведения Cos (180-α) = - cosα имеем:
Косинус внешнего угла равен Cos(180-А)= -52/(4√170) ≈- 0,997.
α = arccos(-0,997) ≈ 176° (угол тупой).
Ответ:
AB=BC=x
a²=x²+x²
a²=2 x²
x²=a²/2
x=a2
сторона треугольника равна a/2
1.a{6;-9} -1/3а={-2;3}
b{3;-4} ⇒2b={6;-8}
-1/3a+2b={4;-5}
2. DM=b+5/8a
Смотри фото, там рисунок и решение
SК=√180=6√5 см.