На рисунке обозначения другие.
Несколько способов существует. Докажем через отношение площадей.
Треугольники имеют общую вершину, их площади относятся как их основания: S(ABD) : S(DBC) = AD : DC.
У этих треугольников равные углы, поэтому отношение площадей равно отношению произведений сторон, образующих эти равные углы.
S(ABD) : S(DBC) = (AB*BD) :( BD*BC) = AB : BC.
И получаем AD: DC = AB:BC).
1. Из треугольника АВД угол ВАД = 180 - (87 +40) = 53 (град)
2. Угол ВАД = АДС ( как углы при основании равнобедренной трапеции)
3. Угол ВСД = 180 - 53 = 127 (град)
Ответ: Угол ВСД = 127 градусов.
Можно решить иначе.
Угол ДВС = ДАВ (как накрест лежащие угла при параллельных прямых ВС и АД и секущей ВД = 40. Тогда угол АВС = 127, но он равен углу ВСД
Так что угол ВСД = 127 градусов