A+b+c=pi => sin(c)=sin(a+b)
sin(a)+sin(b)+sin(c)=sin(a)+sin(b)+sin(a+b)=2sin({a+b}/2)cos({a-b}/2)+2sin({a+b}/2)cos({a+b}/2)=2sin({a+b}/2)(cos({a-b}/2)+cos({a+b}/2))=
=2cos(c/2)*2*(cos(a/2)*cos(b/2)) что и требовалось доказать
sin({a+b}/2)=sin(90-c/2)=cos(c/2)
-2 = log(1/5)(1/5)^(-2) = log(1/5)(25)
это неравенство равносильно системе:
3x+4>0
3x+4<=25 (т.к. основание логарифма меньше 1)))
---------------
x > -4/3
x <= 7
Ответ: (-1)
если b : а = 1:2 ⇔ (a/b =2._,без дроби).
=1 -ab/(a²+b²) = 1 -(a/b)/((a/b)² +1) =1 -2/(4+1) =1 -2/5 =3/5.
или сразу
=a²(1 -b/a+(b/a)²) / a²(1+(b/a)²) = (1 -b/a+(b/a)²) / (1+(b/a)² )=
(1 -1/2+1/4)/(1+1/4) =(3/4)/(5/4) =3/5 =0,6.
или =(a/b -1+b/a)/(a/b +b/a) =(2 -1+1/2)/(2+1/2) =(3/2)/(5/2) =3/5.
(разделил одновременно числитель и знаменатель на a*b ).
-----------------------
Представить выражение в виде , где а, b и c - целые числа:
=(2x² -2x +7x -7 +4)/(x-1) =(2x(x-1) +7(x-1) +4)/(x-1) =2x +7 +4/(x-1).
a=2;b=7; c=4.
или по другому :
=(ax² -ax +bx-b +c)/(x-1) = (ax² +(b-a)x -(b -c))/(x-1).
{a =2 , b-a=5 ; b-c =3⇔{a=2 ;b=a+5; c=b-3 ⇔{a=2; b=7; c=7 -3 =4.
2x +7 +4/(x-1).
-----------------------
Определите, при каких натуральных n значения данных выражений являются целыми числами:
= (n² +2n +n+2 -4)/(n+2)= n+1 - 4/(n+2) ⇒n=2 (делители числа 4 : {± 1, ± 2, ± 4} , но здесь натуральные)
1. Преобразуйте в многочлен
а) (х+4)²=x²+8x+16
б) (3b-c)²=9b²-6bc+c²
в) (2y+5)(2y-5)=4y²-25
г) (y²-x)(y²+x)=y⁴-x²
2. Разложите на множители
а) 0,25-a²=(0,5-a)(0,5+a)
б) b²+10b+25=(b+5)²
в) -x⁴+2x²-1=-(x⁴-2x²+1)=-(x²-1)²
г) 49x⁶y⁸-x²y⁴=x²y⁴(7x²y²-1)(7x²y²+1)=(√7xy-1)(√7xy+1)(7x²y²+1)
д) 100x⁴-(10y-3)²=(10x²-(10y-3))(10x²+10y-3)=(10y²-10y+3)(10y²+10y-3)
3. Найдите значение выражения (a+2b)²-4b(a+b) при a=-0,1
(a+2b)²-4b(a+b) =a²+4ab+4b²-4ab-4b²=a²
при а=-0,1 а²=(-0,1)²=0,01
4. Выполните действия
a) 3(1+2xy)(2xy-1)=3(2xy+1)(2xy-1)=3(2xy)²-1²=3*4x²y²-1=8x²y²-1
б) (2x³-3x)²=(2x³)²-2*2x³*3x+(3x)²=4x⁶-12x⁴+9x²
в) (x-1)(x+1)(x²+1)=(x²-1)(x²+1)=x⁴-1
г) (y-5)²(y+5)²=((y-5)(y+5))²=(y²-25)²=y⁴-50y²+625
5. Решите уравнение
а) (4x-3)(4x+3)-(4x-1)²=3x
16x²-9-16x²+8x-1=3x
8x-3x=10
5x=10
x=2
б) 16с²-49=0
(4c-7)(4c+7)=0
4c-7=0 или 4с+7=0
4с=7 4с=-7
с=7/4 с=-7/4
с=1,75 с=-1,75
Ответ:
Объяснение:
х- основание
х+2х+2х=40
5х=40
х=8см - основание
2*8=16 см - боковые стороны