ABCD прямоугольник,следовательно ВС=AD=16см.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.Значит AO=DO=12см
Тогда периметр треугольника AOD равен 2*12+16=24+16=40см
<em>Основанием правильной треугольной пирамиды является равносторонний треугольник, вершина правильной пирамиды проецируется в центр основания, а боковые грани - равнобедренные треугольники. </em>
<span>Т.к. К - середина ВС, то SK - медиана и высота боковой грани. </span>
Площадь боковой поверхности - сумма площадей трёх боковых граней.
S=a•h:2
S=4•21"2=42
3S=42•3=126 (ед. площади)
Все очеееееееееень легко. треугольник бдс: ас=бс=5, вд=4, дс=1/2ас=3
Проведём из вершины треугольника высоту,которая делит треугольник пополам.
По теореме Пифагора находим эту высоту:
13*13 - 5*5=X*X
Высота равна 12
Высота равна половине радиуса вписанной окружности
Ответ:6
Находим координаты точки А как пересечение заданных прямых,
<span>2x+3y−1=0
</span><span>3x−y−3=0 умножим на 3
</span><span>2x+3y−1=0
</span><span>9x−3y−9=0
</span>__________
11х -10 = 0 х = 10/11
у = (-2х+1)/3 = (-2*(10/11)+1)/3 = ((-20/11)+(11/11)/3 = -9/33 = -3/11.
А((10/11); (-3/11)).
Так как абсцисса точки А не 2, то это абсцисса точки В.
Подставим х = 2 в уравнение катета 2х+3у-1 = 0.
Получаем у = (1-2х)/3 = (1-2*2)/3 = -3/3 = -1.
В(2; -1).
Уравнение катета <span>АВ: у = (-2/3)х+(1/3).
</span>Уравнение катета <span>ВС: у = (3/2)х+ в.
</span>Подставим координаты точки В:
-1 = (3/2)*2 + в
в = -1 - 3 = -4.
ВС: у = <span>(3/2)х - 4 или 3х - 2у - 8 = 0.
Точку С находим решением системы уравнений второго катета и гипотенузы.
</span><span>3х - 2у - 8 = 0.
</span>3х - у -3 = 0,
Вычтем их второго уравнения первое: у = -5.
х = (у + 3)/3 = (-5 + 3) / 3 = -2/3.
С((-2/3); -5).
Чертёж треугольника дан в приложении.