1. Немає даних<span>2. СД=корінь(АД *ВД)=корінь(36*49)=42, 4. периметр1(Р1)=72, периметр2(Р2)=7+8+9=24, Р1/Р2=k=72/24=3, сторона1=3*7=21, сторона1-2=3*8=24, сторона1-3=3*9=27, 5. гіпотенуза=корінь(катет1 в квадраті+катет2 в квадраті)=корінь(36+64)=10, радіус кола=1/2гіпотенузи=10/2=5, 6. Трапеція АВСД, АВ=10ВС=9, СД=17, АД=30, проводимо висоти ВН і СК на АД, ВН=СК, НВСК-прямокутник ВС=НК=9, КД=х, АН=АД-НК-КД=30-9-х=21-х, трикутник АВН, ВН в квадраті=АВ в квадраті-АН в квадраті=100-441+42х-х в квадраті, трикутник КСД СК=СД в квадраті-КД в квадраті=289-х в квадраті, 100-441+42х-х в квадраті=289-х в квадраті, х=15=КД, АН=21-15=6, ВН=корінь(100-36)=8
</span>
Если вы изучали sin, cos, tg, ctg - то будут задания, основанные на доказательстве подобных трекгольников и углов.Если не проходили, то задания просто по теме подобия треугольников будут легкими.
1 вариант.
∠АСВ=∠СКМ. Найти х 2) Найти FK.
Найти у.
<span>Диагонали трапеции АВСД с основаниями АВ и СД пересекаются в точке О. Найдите АВ, если ОВ=4 см, ОД=10 см, ДС=25 см.* Докажите, что два равносторонних треугольника подобны.</span>
II-вариант.
∠DAN=∠ARW. Найти RW 2) найти у
3) Найти FK.
<span>Диагонали трапеции АВСД с основаниями АВ и СД пересекаются в точке О. Найдите АО, если АВ=9,6 дм, ДС=24 см, АС=15 см.<span>* Докажите, что два равносторонних треугольника подобны.</span>
</span>
Ответ:
CD
Объяснение:
Потому что BC основание к которому проведена высота CD
Шестиугольник можно разрезать на 6 равносторонних треугольников, сторона каждого 4 см. Диаметр тогда, очевидно, 8 см. Сторона квадрата равна диаметру.
Ответ: 8 см.