BKC подобен AKD (по углам: ∠KBC подобен ∠KAC (т.к. односторонние углы при двух параллельных прямых и секущей.) (С ∠KCB и ∠KDA такая же ситуация) (∠K-общий угол)
ВС:AD=3:5
Пусть к-коэффициент подобия, тогда k=3/5
По теореме о площадях подобных треугольников (Площади подобных треугольников относятся, как коэффициент подобия в квадрате)
S
akd=(27×25)/9=75 см² -это площадь большого треугольника AKD, что бы найти площадь трапеции ABCD, надо из площади большого треугольника Sakd вычесть площадь маленького Sbkc
Sabcd=Sakd-Sbkc= 75 -27 =48 см²
Sтрапеции abcd = 48 см² -это и есть ответ.
Надеюсь помогла
Площадь круга S= пи R^2
R= (a * корень из 2): 2
R= 3 корня из 2
Площадь равна 18 пи
Площадь осевого сечения в условиях задачи = 4 r^2
боковая поверхность = 2πr*2r = 4π r^2
ответ: в π раз