.,.,.,.,.,.,..,.,.,.,..,.,
Теорема о сумме углов выпуклого многоугольника
<em>Для выпуклого n-угольника сумма углов равна 180°(n-2)</em><span>. </span>
Доказательство<span>. </span>
<span>Для доказательства теоремы о сумме углов выпуклого многоугольника воспользуемся уже доказанной теоремой о том, что сумма углов треугольника равна 180 градусам.</span>
<span>Пусть A 1 A 2... A n – данный выпуклый многоугольник, и n > 3. Проведем все диагонали многоугольника из вершины A 1. Они разбивают его на n – 2 треугольника: Δ A 1 A 2 A 3, Δ A 1 A 3 A 4, ... , Δ A 1 A n – 1 A n . Сумма углов многоугольника совпадает с суммой углов всех этих треугольников. Сумма углов каждого треугольника равна 180°, а число треугольников – ( n – 2). </span><em>Поэтому сумма углов выпуклого n -угольника A 1 A 2... A n равна 180° ( n – 2).</em>
Сумма всех углов составит 360 град
Если сумма двух углов равна 160 град, значит каждый из этих углов будет по 80 град. Остальные два угла равны: (360-160)/2=100 град
Ответ: два угла по 80 град и 2 угла по 100 град.
АВСД - трапеция, ВС = 2 см, АД = 8 см, диагональ АС = 4 см
BC ll AD ⇒ <BCA = <CAD обозначим их через α
тогда
Sabc = BC * AC * 1/2 * sinα = 2 * 4 * sinα * 1/2 = 4sinα
Sacd = AC * AD * 1/2 * sinα = 4 * 8 * 1/2* sinα = 16sinα
Sabc/Sacd = 4sinα/16sinα = 4/16=1/4
Ответ: 1/4
Периметр прямоугольника - это сумма всех сторон прямоугольника. У Вас известна одна сторона, которая равна 1,5 см. Значит, Вам нужно узнать вторую сторону, которая в 4 раза больше первой стороны. Раз она в 4 раза больше, то первую сторону (1,5 см) нужно умножить на 4. У Вас получится вторая сторона. Затем, Вы можете сложить эти стороны и умножить их на 2, так как, сложив первые две стороны, у Вас получится только по одной длине и ширине, а в прямоугольнике две длины и две ширины. Когда Вы умножите на 2 - получится сумма всех сторон, а это и есть периметр.