Теорема - свойство биссектрисы треугольника.
Если <em>AA</em><em>1</em> - биссектриса внутреннего угла <em>A</em> треугольника <em>ABC</em>, то
ВА*/А*С= ВА/ АС .
Иными словами, биссектриса внутреннего угла треугольника делит противоположную сторону на части, пропорциональные заключающим ее сторонам.
<em>Доказательство.</em>Проведем через <em>B</em> прямую, параллельную <em>AC</em>, и обозначим через <em>D</em> точку пересечения этой прямой с продолжением <em>AA<em>1</em></em> .
Согласно свойству параллельных прямых имеем <span>Ð</span><em>BDA</em> = <span>Ð</span><em>CAD</em>. Так как <em>AA</em><em>1</em> - биссектриса, то <span>Ð</span><em>CAD</em> = <span>Ð</span><em>DAB</em>. Итак, <span>Ð</span><em>BDA</em> =<span>Ð</span><em>DAB</em>, потому <em>BD</em> = <em>BA</em>.
Из подобия треугольников <em>CAA</em><em>1</em> и <em>BDA</em><em>1</em> (по второму признаку <span>Ð</span><em>BDA</em><em>1</em> = <span>Ð</span><em>CAA</em><em>1</em> , <span>Ð</span><em>BA</em><em>1</em> <em>D</em> = <span>Ð</span><em>CA</em><em>1</em><em>A</em>) получаем ВА*/А*С =ВD/АС =ВА/АС , что и требовалось доказать.
Заметим, что можно было бы с тем же успехом провести через <em>B</em> прямую, параллельную биссектрисе <em>AA</em><em>1</em>,до пересечения в точке <em>E</em> с продолжением <em>CA</em> . Тогда <em>EA</em> = <em>AB</em> и СА /АЕ =СА/АВ .
S=a*b
p=2(a+b)
где а и b-стороны
решаем систему:
1080=a*b
138=2(a+b) или же 69=a+b
выражаем а:
а=69-b
и подставляем
1080=b(69-b)
b2-69b+1080=0
D=4761-4*1080=441=21^2
b1=(69+21):2=45
b2=(69-21):2=24
находим, а1=69-45=24
а2=69-24=45
в-принципе, можно считать, что решение единственно, поскольку числовые значения в первом и втором случаях совпадают
теперь по теореме Пифарога найдем диагональ:
с^=a^2+b^2=576+2025
с=51
Внешний угол треугольника равен сумме двух углов, не смежных с ним. Следовательно
137-28=109° второй не смежный угол
Я так понимаю, в условии опечатка. AD = 3cм, а периметр ABC равен 22см.
По свойству касательных к окружности, проведенных из одной точки:
AD = AF = 3 (cм)
BD = BE
CE = CF
BE + CE = BC
P = AD + BD + BE + CE + CF + AF
P = 2AD + 2BE + 2 CE
P = 2AD + 2 * (BE + CE)
P = 2AD + 2BC
P = 2 * (AD + BC)
22 = 2 * (3 + BC)
3 + BC = 22 / 2
BC + 3 = 11
BC = 8 (cм)
Ответ ответ ответ ответ ответ ответ