1) Рассмотрим треугольник ABH:
Угол AHB=90 градусов, т.к. BH-высота, AB=13, AH=5, тогда по теореме Пифагора:
AB^2=AH^2+BH^2,
BH^2=AB^2-AH^2,
BH^2=13^2-5^2,
BH^2=169-25,
BH^2=144,
BH=12.
2) По теореме о площади параллелограмма:
S=BH*AD=BH*(AH+HD)=12*(5+5)=120.
Ответ:120.
1+3+5=9(частей)- всего
Сумма углов треугольника равна 180°.
Одна часть: 180:9=20°.
20°×3=60°
Ответ:60°.
Пирамида правильная, значит в основании лежит квадрат ABCD, и высота, опущенная из точки M, будет падать в точку пересечения диагоналей квадрата в основании. Точку пересечения диагоналей обозначим H.
В прямоугольном треугольнике MHA:
<MAH = 60° (т.к. AH - проекция AM)
AM = 5
cos<MAH = AH/AM
cos60° = AH/5
AH = 5/2 = 2,5
AH - половина диагонали AC
AC = 2AH = 5
Из прямоугольного треугольника ACD (AD = DC = x, так как ABCD - квадрат), по теореме Пифагора:
AD² + DC² = AC²
x² + x² = 25
2x² = 25
x = 5/√2 = (5√2)/2
AD = DC = (5√2)/2
Sбок будет равно Pосн умноженное на апофему.
Проведем апофему MH1 в треугольнике MDC.
Т.к. пирамида правильная, треугольник MDC - равнобедренный, а значит высота MH1 так же является и медианой => DH1 = DC/2 = (5√2)/4
Из прямоугольного треугольника MHD по теореме Пифагора:
MH1² = MD² - DH1²
MH1² = 25 - 25/16
MH1² = 15*25/16
MH1 = (5√15)/4
Sбок = Pосн*MH1
Pосн = 4*AD = 10√2
Sбок = (10√2)*(5√15)/4 = (25√30)/2 = 12,5√30
Ответ: 12,5√30
Доказать: ΔAFE - равнобедренный.
Решение.
Рассмотрим ΔBAF и ΔCAE.
AB=AC, BF=CE, угол ABF= углу ACE => ΔBAF = ΔCAE(по двум сторонам и углом между ними) => AF=AE.
Треугольник называют равнобедренным, если две его стороны равны.
ΔAFE: AF=AE. Отсюда следует, что он равнобедренный, что и требовалось доказать.
Косинус угла равен:скалярное произведение разделить на произведение длин векторов.