<span>Обозначим пирамиду MABCD, МО - высота пирамиды, МН - высота боковой грани. </span>
<span>Так как все грани наклонены к основанию под одинаковым углом, высоты граней равны между собой и их <em><u>проекции</u> равны радиусу вписанной в основание окружности. </em></span>
<span><em>МН</em>=ОН:cos</span>∠МНО=3•cos60°=<em>6</em>.
<em>Площадь боковой поверхности</em> пирамиды равна сумме площадей ее боковых граней или <em>произведению высоты грани на полупериметр основания, </em>что то же самое<em>.</em>
<span>Рассмотрим основание ABCD пирамиды MABCD. </span>
<em>Диаметр вписанной в ромб окружности равен высоте этого ромба</em>. Радиус вписанной окружности по условию равен 3.
d=КВ=2r=6
Высота DH=d=6
<span>DH</span>⊥<span>АВ, противолежит углу 30°</span>⇒сторона ромба <span>АВ=2•DH=12</span>
<span><u>Периметр</u> ромба 12•4=48. </span>
<span>Ѕ(бок)=МН•Р:2=6•48:2=144 (ед. площади)</span>
SinA=BC/AB
AB=BC/sinA=8/0.4=20
ответ 20
<span>Тут все просто Угл DАB и Угл DCB равны </span>
<span>УГЛ АDB b УГЛ BDC равны </span>
<span>Теперь если мы сосщитаем сумму углов АDB DАB эта сумма будет равна сумме углов DCB и BDC </span>
<span>соответственно углы DBA b угл DBC равны </span>
<span>СТРОНА BD общая </span>
<span>Из этого следует что треугольники равны.</span>