-6х<4
х<4:(-6)
х>-2/3в дробе
Подставим
, получим
, значит корень будет в любом случае равен
Рассмотрим выражение a^2+6a+5=k^2 , так как корни квадратного уравнения имеют вид x1,2=(1-a+/-k)/2 и целыми , то k- должно быть по крайней мере не иррациональным числом .
a^2+6a+5 = (a-3)^2-4=k^2
(a+k+3)(a-k+3)=4 , пусть они соотвественно равны x*y=4, рассмотрим случаи x*y={1*4, 4*1, 2*2, -2*-2, -4*-1, -1*-4} по порядку . Первый случай
{a+k+3=1
{a-k+3=4
Суммируя оба выражения ,получаем решения a=-1/2, k=-3/2, подставляя в общий вид корня уравнения x1,2 получим не целые значения , рассмотрев аналогично все случаи подходят лишь 1)x=2,y=2 и 2)x=-2,y=-2.
При
1) получаем решение a=-1, k=0
2) получаем решение a=-5, k=0
При этом корни целые.
Значит a=-1 , b=0 и a=-5, b=8.
Первый множитель (m-n) и второй (m+n) - это формула разности квадратов - m^2-n^2. То есть можно записать так (m^2-n^2)*(m^2+n^2) - это тоже разность квадратов. Значит сгруппируем и получим, что m^4-n^4=m^4-n^4. Тождество доказано.
AB={xb-xa;yb-ya}={-1-3;-3-1}={-4;-4}