Пусть из точки А проведены наклонные АВ=8см и АС=6см. , расстояние от точки А до плоскости равно АО-длине перпендикуляра опущенного из этой точки на плоскость. Пусть проекция наклонной FC=[? тогда проекция наклонной АВ=1,5корень из 2*х, по теореме Пифагора из треугольников АВО и АСО выразим AO
АО^2= 6^2-x^2
AO^2=8^2-()1.5корень из 2)^2
приравняем эти равенства 36-х^2=64-2.25*2*x^2, 36-x^2=64-4.5x^2, 3.5x^2=28,
x^2= 28:3.5=8
AO^2=36-8=28
Вооооооооооооооооооооооооот
Сторона ромба равна: площадь, делённая на высоту
6 / 2 = 3
Ответ:
Проекция ребра SA на плоскость будет OA (SO ┴ (ABCDEF) и равна радиусу описанной около основания (здесь правильного шестиугольника) , что свою очередь равна сторону шестиугольника a₆ = R =acosα ; SO =H =asinα .
Vпир =1/3*Sосн*H =1/3*6*√3/4*(acosα)²*asinα =(√3/2)*cos²α*sinα*a³ .
При α=60° ; a= 2 получаем : Vпир = (√3/2)*1/4*(√3/2*8 =3/2.
Апофема пирамиды является образующий конуса
Vкон =1/3*π*r² *H
r = (√3/2)*R =(√3/2)*acosα.
Vкон =1/3*π*((√3/2)*acosα)*asinα =.(π/4)*cos²α*sinα*a³ .
Получилось Vкон = ( π/2√3) *Vпир .
При α=60° ; a= 2 получаем : Vкон =( π/2√3)*3/2 =π√3/6.
***************************************************************
L =√(a² - (R/2)² =√(a² -(1/2*acosα)²) =a/2*√(4 - cos²α)
Объяснение:
Ав - 6х ас - 8х вс = 20 см
те-ма Пифагора : 36х² = 400 - 64х²
100х² = 400
х² = 4
х = 2
если х = 2 ,то ав = 6·2 = 12 см