На стороне ВС остроугольного треугольника АВС как на диаметре построена полуокружность, пересекающая высоту АD в точке М, АD=75, MD=60, H-точка пересечения высот треугольника ABC. Найдите HD.
РЕШЕНИЕ:
• АМ = АD - MD = 75 - 60 = 15
AK = AM + MD + DK = 15 + 60 + 60 = 135
• По свойству секущих:
АЕ • АС = АМ • АК = 15 • 135
• тр. АНЕ подобен тр. АСD по двум углам ( угол А - общий , угол АЕН = угол ADC = 90° )
Составим отношения сходственных сторон:
АЕ/АD = AH/AC = HE/CD , отсюда
AE/AD = AH/AC
AE • AC = AD • AH =>
AH = AE • AC / AD = 15 • 135 / 75 = 27
HD = AD - AH = 75 - 27 = 48
ОТВЕТ: 45.
Катет равен косиницу 30 градусов
Пусть х - первый угол, тогда 8х - второй угол \\ отношение 1:8
Т. к. сумма односторонних углов равна 180°, то
х + 8х = 180
9х = 180
х = 20
8х = 160
Ответ: 20° и 160°.
Координаты вершин треугольника АВС: А(-6;1), В(2;4), С (2;-2).
Длины отрезков
АВ²=(2+6)²+(4-1)²=73
<span>АВ=√73
</span>ВС²=(2-2)²+(-2-4)²=36
<span>ВС=√36=6
</span>АС²=(2+6)²+(-2-1)²=73
<span>АС=√73
АВ=АС=√73≠ВС- треугольник РАВНОБЕДРЕННЫЙ ч.т.д.
Построим высоту АН
Δ АВН -прямоугольный с катетом АВ=6:2=3 и гипотенузой АВ=√73
По теореме Пифагора
АН²=73-9=64
АН=8 (см)
</span>