1) Пусть дан пареллелограм ABCD, т.K,L,M,N - средины сторон AB,BC,CD,AD соответственно. BC||KM||AD и AB||LM||CD. KBLO- параллелограм и ΔKBL=ΔKLO, аналогично можно доказать равенство и остальных треугольников, а это значит что площадь KLMN равна половине площади ABCD, то есть площадь KLMN=20/2=10
2) Дано трапеция ABCD,AB||CD, т. O- точка пересечения диагоналей
ΔAOB подобный ΔDOC,как имеющие равные углы AOB и DOC и лежащих между параллельными прямимы.
В подобных треугольниках площади относятся как квадраты коэффициентов подобия, то есть AOB:COD=1:9
Согласна, но считаю, что касательная может быть и с той же стороны от точки о, что и касательная. тогда мы будем не прибавлять к радиусу, а вычитать из него. 13-5=8.
итог 2 ответа: 8 и 18
Определение: Координаты вектора равны разности соответствующих координат точек его конца и начала. Следовательно, вектор ВА{3-(-7); 8-3} или ВА={10;5}. Вектор ВС={n-(-7);11-3} = {n+7;8}.
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение: (a,b)=Xa*Xb+Ya*Yb или в нашем случае:
(ВА,ВС) = 10*(n+7)+5*8 = 10n+110. = 10(n+11). => n+11 = 0. Тогда ответ:
n = -11.
Рисунок :) Без него оч. трудно представить ситуацию)
Средняя линия равна половине суммы оснований, тогда сумма оснований будет в 2 раза больше и равна 20; S=1/2*H*сумму оснований=1/2*4*20=2*20=40;