В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны.
Трапеция - четырехугольник, следовательно, если в неё можно вписать окружность, то сумма ее оснований равна сумме боковых сторон.
Сумма оснований данной трапеции 3+5=8, а её средняя линия равна 4
Пусть длина меньшего основания а . Тогда длина большего - 8-а.
Средняя линия трапеции делит саму трапецию на две меньшего размера, высоты каждой из которых равны половине высоты исходной.
Площадь трапеции равна полусумме оснований, умноженной на высоту.
Пусть высота каждой части трапеции равна h.
Тогда площадь верхней трапеции будет (а+4)•h:2,
а площадь большей (8-а+4)•h:2=(12-а)•h:2
По условию отношение этих площадей равно 5/11⇒
[ (а+4)•h:2]:[ (12-а)•h:2]=5/11
Отсюда 60-5а=11а+44
16а=16
а=1
Подробнее - на Znanija.com - znanija.com/task/19836366#readmore
Площадь прямоугольника находят по формуле
S=1/2 * d1 * d2 * Sin(угла между ними)
(d1 и d2 это диагонали )
так как в прямоугольнике диагонали равны, то
S=1/2*10*10*Sin30* = 50*1/2 = 25см"
Ответ: площадь прямоугольника равна 25см"
А) 1 размер, т.к. треугольник равносторонний и все углы равны
б) 2 размера, т.к. треугольник равнобедренный и боковые стороны равны
в) 3 размера, т.к. треугольник разносторонний и все стороны не равны
так как AD = DC, ED - общая, угол EDA = угол EDC, то треугольники AED и CED - равные, следовательно AE = EC
1) Сделай рисунок и увидишь пирамиду. А если S равно удалена от каждой вершины квадрата, то ее боковые стороны равны, то есть перпендикуляр из S (расстояние от точки S до плоскости) падает точно в центр квадрата, который обозначим за О. Соедини О и А и получишь прямоугольный треугольник АОS( т.к. ОS перпендикулярно плоскости квадрата).
В нем нам известно две стороны, а конкретно катет ОS=24 и гипотенузу AS=30. А вспомнив теорему пифагора, получим:
АS^2=OS^2+AO^2
Отсюда AO=√(АS^2-OS^2)
AO=√324
Обе диагонали квадрата равны 2*AO=2*√324
А т.к. квадрат это параллелограмм, то его площадь это полупроизведение диагоналей, т.е. S=((2*AO)^2)/2= 4*324/2=648
И опять же эту площадь можно посчитать как AB^2, отсюда AB=√S=√648=18√2
Ответ: сторона квадрата равна 18√2
2) АВ=ВС (т.к. треугольник правильный)
Найдем высоту этого правильного треугольника, проведенную из А, она считается как АН=(√3)/2*ВС=(5√3)/2
Проведем перпендикуляр из М на ВС (это и есть искомое расстояние), он упадет точно в Н (по теореме о наклонной и ее проекции). Видим треугольник АМН, он прямоугольный, т.к. АМ перпендикулярна плоскости трегольника, в нем нам известны катеты АМ и АН, тогда по теореме Пифагора имеем:
МН=√(АМ^2+АН^2)
МН=√(4^2+((5√3)/2)^2)
МН=√(16+25*3/4)
МН=√(139)
МН=(√1139)/2
Ответ: искомое расстояние равно (√1139)/2.
Думаю все достаточно подробно, второй ответ не очень красивый, попробуй самостоятельно еще все пересчитать.