Хорда АВ стягивает дугу, равную 125º,
следовательно, <u>градусная мера центрального угла АОВ равна 125º.</u>
<u />
У задачи <u>два решения</u>.
1)
<u>Точка С находится вне угла АОС</u>.
Тогда ∠ СОВ равен 125º+15º=140º.
<u>∠ ВАС опирается на дугу СмВ</u>, которая равна
360º-140º=220º, и вписанный угол ВАС равен половине центрального угла, который опирается на эту же дугу:
∠ВАС=220º:2=110º
2)
<u>Точка С находится внутри угла АОВ.</u>
Тогда центральный угол СОВ равен опирается на дугу ВеС
∠СОВ=125º-15º=110º,
а вписанный ∠ВАС, опирающийся на эту же дугу, равен половине центрального угла и равен
∠ВАС=110º:2=55º.
<u>Основанием высоты</u> правильной треугольной пирамиды <u>является </u>точка пересечения высот (медиан, биссектрис) основания, т.е. <u>центр описанной и вписанной окружностей</u>.
Все ребра и все стороны правильной пирамиды равны.
Обозначим вершины треугольника основания АВС,
высоту пирамиды МО.
СН - высота основания
Соединим НМС в треугольник.
Угол МНО=30°
МС=√13
Пусть сторона основания равна а.
Основание - правильный треугольник, поэтому
СН=а*sin(60°)=а√3):2
ОН=а√3):6 ( радиусу вписанной окружности)
СО=а√3):3 (радиусу описанной окружности)
Высота пирамиды
МО=НО:ctg(30°)=a/6.
Из треугольника МОС по т.Пифагора найдем величину а:
<span>МО²+ОС²=МС²</span><span>(
а/6)²+ (а√3):3)²=13
</span>а²=36
а=6
Высота боковой грани
МН =МО : sin(30°)=2 MO
<span>МО=a/6=1</span>
Отсюда высота боковой грани равна 2
S бок=3*6*2:2=
18 единиц площади
---
[email protected]<span>
</span>
Ответ:
нарисуй человека дающего подарок другу на фоне радуги
Объяснение:
Да,подобны.
P.S.Второй треугольник больше первого в 2 раза