<span>
должен быть параллелограммом</span>
Ответ:
Да, коллинеарны.
Объяснение:
По условию векторы a и b - коллинеарные векторы.
Пусть,
a={x1;y1;z1}
b={x2;y2;z2}
a+b={x1+x2;y1+y2;z1+z2}
Тогда по условию коллинеарности
x1/x2=y1/y2=z1/z2=k
тогда координаты вектора b можно переписать в виде:
b={k*x1;k*y1;k*z1}
Вектор a+b примет вид:
a+b={x1+k*x1;y1+k*y1;z1+k*z1}
Проверим выполняется ли условие коллинеарности:
x1/(x1+k*x1)=y1/(y1+k*x1)=z1/(z1+k*z1)
x1/(x1*(k+1))=y1/(y1*(k+1))=z1/(z1*(k+1))
1/(k+1)=1/(k+1)=1/(k+1)
Соотношения равны ⇒ условие коллинеарности соблюдено и вектора коллинеарны
Кут РАО=90градусів звідси кут АОР =75 г. АО=ОВ як радіуси одже трикутник АОВ рівнобедренний кутАОВ=150градусів
В равнобедренном треугольнике АВС ВД - высота и биссектриса, значит ∠АВС=60°. ∠ВАС=∠ВСА=(180-∠АВС)/2=60°.
В треугольнике АВС все углы равны, значит он равносторонний.
Высота равностороннего треугольника h=a√3/2,
a=2h/√3=2h√3/3.
АВ=2·6√3/3=4√3 см.
S(ABC)=AB²√3/4=48√3/4=12√3 см².
S(АВД)=S(ABC)/2=6√3/ см².
Проведём ДК⊥АВ.
S(АВД)=АВ·ДК/2 ⇒ ДК=2S(АВД)/АВ=12√3/(4√3)=3 см - это ответ.
Пусть внутренний угол В равен х, тогда
∠1 = х + 80° (так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним),
∠2 = 180° - х, так как эти углы смежные.
∠1 - ∠2 = 64°
x + 80° - (180° - x) = 64°
2x = 64° + 100°
x = 82°
∠B = 82°