Для начала найдем координаты векторов. Для этого восползуемся правилом: чтобы найти координаты вектора, нужно из координат конца вектора вычесть координаты начала.
И так, приступим
AB(-3+5;4+2)=AB(2;6)
BC(2+3;-1-4)=BC(5;-5)
AC(2+5;-1+2)=AC(7;1)
Теперь найдем сумму векторов
1)AB+BC+AC=a(2+5+7;6-5+1)=a(14;2)
2) AB+BC=b(2+5;6-5)=b(7;1)
3)AB+AC=c(2+7;6+1)=c(9;7)
Пояснения: a,b и с - это вектора, полученные при сложении данных.
Радиус, проведенный в точку касания, перпендикулярен касательной.
из данной длины окружности можно найти радиус окружности))
Опустим из вершин меньшего основания перпендикуляры к большему. Трапеция равнобедренная, значит, большее основание равно меньшему основанию плюс два равных отрезка при углах 60°.
Отрезки находим из прямоугоных треугольников, в которых один из углов по условию задачи 60°, второй по построению 90°, третий, соответственно, 30°.
Известно, что катет, противолежащий углу 30°, равен половине гипотенузы.
Величина отрезков АН и КД равна 16:2=8 см
АД=8*2+х
АД+ВС=16+х+х=38см
2х=22см
х=11 см-это меньшее основание
х+16=27 см- это большее основание.
Ответ: АД=27 см,ВС=11 см