Дано: АВ и АС - касательные, ОА=30 см, ОВ=15 см.
Найти: угол ВОС.
Решение:
Рассмотрим треуг-ки АОВ и АОС:
ОВ=ОС=R, ОА - общая, АВ=АС (по определению - отрезки касательных, проведенных из одной точки, равны) => эти треугольники равны по 3-му признаку=> уголВОА=угол ОСА.
Рассм. треуг. АОВ: т.к. ОВ в 2 раза меньше АО, то угол ОАВ=30 градусов(сторона, лежащая напротив угла в 30 градусов, равна половине гипотенузы). угол ВОА=180-90-30=60 градусов.
угол ВОС= угол ВОА+ угол ОСА= 60+60=120 градусов.
Ответ: 120 градусов.
Внешний угол треугольника равен сумме двух углов не смежных с ним.
угол ВСД равен сумме углов А и В. сумма углов треугольника 180 градусов. А+В=180-С= 130 град. угол ВСД 130 градусов
В трапеции АВСD проведем из точки C высоту к основанию АD. Соединим точки пересечения высот и диагоналей М и N. Получился прямоугольник МВСN.
Изобразим плоскость α в виде прямой АВ║α. Пусть одна часть равна х, тогдаВВ1=2х, АВ= 5х.
По условию АВ= ВВ1=5х-2х=9, 3х=9, х=9/3=3.
АВ=5·3= 15 л.ед.
ВВ1=2·3=6 л. ед. АВВ1А1 - параллелограмм ( по условию противоположные стороны параллельны). Вычислим периметр.
Р= 2(15+6)=42 л. ед.
Ответ: 42 л. ед.
C=180°-(A+B) =180°-140°=40°