Ответ:Для того чтобы решить это, надо нарисовать координатную систему
Объяснение:
Тебе надо нарисовать 10 на 10 вверху будет с минусом снизу с +, справо с плюсом слева с минусом, если что вверх это Х влево вправо это z, D(1,0) 1 это X а 0 середина A(7,-8) 7 - X, -8 -Z
137) рассматриваем 2 треугольника АВС и АСД - они равны по 3-му признаку (по трём сторонам, АВ=СД, ВС=АД,АС-общая)
138) смотрим треугольники МФР и ЕФР- они равны по 3-му признаку (МР=РЕ условие, МФ=ФЕ условие, РФ общее), следовательно угол МРФ=углу ЕРФ
далее 2 способа:
а) коль эти углы равны значит РК-биссектриса равнобедренного треугольника, значит она же и медиана а медиана делит основание МЕ пополам, значит МК=КЕ
б) смотрим треугольники МРК и ЕРК - равны по 2 сторонам (МР=РЕ по условию, РК-общее) и углу между ними угол МРФ=углу ЕРФ, а у равных треугольников соответсвенные стороны равны , тобишь МК=КЕ
Ребро не было указано в условии задачи, поэтому я обозначу его за {a}.
--------------
а)
проекция Точки A на плоскость (A1B1C1)=A1, проекция точки D=D1, значит проекция отрезка AD=A1D1.
Отрезок A1D1║B1C1 из свойств правильного шестиугольника, и A1D1║AD так как плоскость (ABC)║(A1B1C1) значит AD║B1C1 Ч.Т.Д.
---------------
б)
Рассмотрим треугольник A1B1C1, опустим высоту A1H на основание B1C1, AH Также будет ⊥B1C1 по теореме о трех перпендикулярах, значит AH искомое расстояние.
AA1 будет ⊥A1H так-как он ⊥ плоскости (A1B1C1).
найдем A1H методом площадей в треугольнике A1B1C1.
A1H также можно было найти рассмотрев треугольник A1BH, сказав что A1H=A1B1*sin(60)
-----------
теперь по теореме пифагора найдем AH:
Ответ:
Есть табличные значения которые ты должен выучить наизусть
не стал переписывать пример
=