Пусть угол 3 равен х, тогда угол 1 равен х/3, угол 2 равен (х/3-20)
<1+<2+<3=180
х/3+х/3-20+х=180
5х/3=200
х=3*200/5=120°
405
406
407
408
cos3αcosα+sin3αsinα=cos(3α-α)=cos2α
409
sin5αcos2α-sin2αcos5α=sin(5α-2α)=sin3α
1+7=8
120÷8=15-1 часть
КМ=15
МL=15×7=105
Пусть A - начало координат
Ось X - AB
Ось Y - AD
Ось Z - AA1
Уравнение плоскости ABC
z=0
Координаты точек
K(0;a/2;0)
L(a/3;a;0)
D1(0;a;a)
Направляющий вектор KL (a/3;a/2;0)
длина KL = a√(1/9+1/4)=a√13/6
Направляющий вектор D1K(0; -a/2; -a)
расстояние от D1 до KL - Высота сечения =
|| i j k ||
|| 0 -a/2 -a || /(√13/6) = a √(19/13)
||a/3 a/2 0 ||
Площадь сечения половина основания на высоту
S=a^2 *√19/12
Уравнение плоскости KLD1
mx+ny+pz+q=0
подставляем координаты точек
an/2+q=0
am/3+an+q=0
an+ap+q=0
Пусть n=2 тогда q = -a m= -3 p= -1
-3x+2y-z-a=0
косинус угла между <span>KLD1 и ABC
cos a = 1/1/</span>√(9+4+1)=1/√14
BD1=Корень квадратный из (4+4+1)=3