Если даны координаты, проще всего решать используя векторы. Хотя можно и иначе
Решение обоими способами в скане...............
∠BAE=∠DAE (AE - биссектриса)
∠DAE=∠BEA (накрест лежащие при AD||BC)
∠BAE=∠BEA => △ABE - равнобедренный.
Биссектриса угла параллелограмма отсекает равнобедренный треугольник.
EC=x, BE=AB=3x
BC=BE+EC=3x+x=4x
P(ABCD)= 2(AB+BC) =2(3x+4x) =14x
14x=42 <=> x=42/14=3 (см)
AB=CD=3*3 =9 (см)
BC=AD=4*3 =12 (см)
Угол АСВ=180-147=33град, угол АВС=90-33=57град
2)В равнобедренном треуг углы при основании равны. Значит уголА=уголВ=(180-54)/2=63град
треуг АВН - прямоугольный, значит уголАВН равен 90-63=27град
Системой: a*b=1200 и 2(а+b)=140
a+b=70
a=70-b
(70-b)*b=1200
70b-b^2-1200=0
b^2-70b-1200=0
там уже через дискриминант
<span>ответ: 40, 30</span>
АЕ = ЕС ⇒ ∠ЕАС = ∠ЕСА, обозначим их α.
Пусть АВ = а, тогда АС = 2а.
Биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Тогда
ВЕ:ЕС = АВ:АС = 1:2
Пусть ВЕ = х, тогда ЕС = EA = 2х.
В ΔЕАС по теореме косинусов для угла ЕАС:
cosα = (AE² + AC² - EC²)/(2AE·AC)
cosα = (4x² + 4a² - 4x²)/(8ax) = a/(2x)
В ΔВАЕ по теореме косинусов для угла ВАЕ:
cosα = (AB² + AE² - BE²)/(2AB·AE)
cosα = (a² + 4x² - x²)/(4ax) = (a² + 3x²)/(4ax)
(a² + 3x²)/(4ax) = a/(2x)
a² + 3x² = 2a²
a² = 3x²
a = x√3
cosα = a/(2x) = x√3/(2x) = √3/2 ⇒ α = 30°
∠ВСА = 30°
∠ВАС = 60° ⇒ ∠АВС = 90°