45-9=36
36/2=18
18>9 на 9
равные стороны = 18 , третья = 9
Противоположный углу 1 угол, назовём его 4, равен углу 1, тоже 100 градусов
Сумма углов треугольника равна 180 градусов.
<span>Значит угол 3 равен 180 - 100 - 48 = 32 градуса</span>
Площадь основания равна сумме площадей треугольников АВД и ВСД. Площадь АВД равна S=½*АВ*ВД=½*3*4=6. Значит площадь основания равна 12.
Найдем площади боковых поверхностей.
По условию задачи <АВ1В=45°, т.е. тр-к АВ1В - прямоугольный равнобедренный, В1В=АВ=3. Высота параллелепипеда равна 3. АД найдем по теореме Пифагора. АД=√AB^2+BD^2=√9+16=√25=5
Площадь боковой поверхности АА1Д1Д равна 5*3=15, площадь АА1В1В равна 3*3=9
Площадь полной поверхности параллелепипеда равна сумме площадей оснований и боковых поверхностей: 2(9+15+12)=2*36=72
<span>По условию в треугольниках ВAС и FAD стороны АВ=AD, AC=AF. Углы при т.А равны как вертикальные. </span>
Δ ВAС=ΔFAD равны по 1 признаку равенства треугольников.
<span>Тогда </span>∠<span>В=</span>∠D, ∠С=∠F. Эти пары углов - <u>накрестлежащие</u>.
<span>ВD и CF- секущие при прямых ВС и FD. <em>Если при пересечении двух прямых секущей накрестлежащие углы равны, то эти прямые параллельны. </em></span>⇒
<span>ВС</span>║<span>DF . Доказано. </span>