Прямые A1C и B1D лежат в одной плоскости <span>A1B1CD.
</span>A1B1CD - это прямоугольник, сторона СД равна 3√2. сторона А1Д равна:
А1Д = √((6√3)²+(3√2)²) = √(108+18) = √126 = 3√14.
Угол α <span>между прямыми A1C и B1D определяем по формуле:
</span>α = 2arc tg((A1B1)/(A1D)) = 2arc tg((3√2)/(3√14)) = 2arg tg(1/√7) =
= <span> 2*20,70481</span>°<span> =
<span>41,40962</span></span>°.
Третья сторона=√2*b²+2*a²-4*m²=√2*23²+2*11²-4*10²=√900=30см
Ответ: 30см
По т.косинусов: с² = 16² + 8² - 2*8*16*cos(40°) = 8² * (4+1-4*0.766) = 8² * (5-3.064) = 8² * 1.936
с = 8 * √1.936 ≈≈ 8 * 1.4 ≈≈ 11.2
по т.синусов 16 / sinA = 11.2 / sin(40°) --->
sinA = 16*sin(40°) / 11.2 ≈≈ 1.43*0.643 ≈≈ 0.9183
∠A ≈≈ 67°
∠B = 180° - 40° - 67° = 140° - 67° ≈≈ 73°
Теорема собственно: средняя линия трапеции параллельна её основаниям, а длина её равна полусумме длин этих оснований.
Доказательство. Дана трапеция АВСD и средняя линия КМ (cм.рис.). Через точки В и М проводим прямую, а сторону AD продолжаем через точку D до пересечения с ВМ. Очевидно, что треугольники ВСМ и МРD равны по стороне и двум углам (СМ = МD, ∠ВСМ = ∠МDР — накрест-лежащие, ∠ВМС = ∠DМР - вертикальные), поэтому ВМ = МР или точка М - середина ВР.
КМ является средней линией в треугольнике АВР. По свойству средней линии треугольника КМ параллельна АР и в частности АD и равна половине АР, что записывается как
КМ = 1\2 AP = 1\2 (AD + DP) = 1\2 (AD + BC), ч.т.д.