В условии, очевидно, имелось в виду
1) произведение цифр больше 86, но меньше 96
2) указать число, меньшее 6000.
Решение:
Так как число делится на 15=3*5, оно делится на 3 и на 5. Значит, оно оканчивается на 0 или 5 и сумма его цифр кратна 3.
На 0 оно заканчиваться не может, так как произведение его цифр больше 86. То есть, оно оканчивается на 5.
Запишем число в виде abc5. a*b*c равно или 18 или 19. Так как 19 - простое число, а каждое из чисел a,b,c меньше 10, то a*b*c=18.
Возможны след варианты разложения 18 на 3 множителя, каждый меньше 10:
18=1*2*9=1*3*6=2*3*3.
1,2,9 и 2,3,3 не подходят, так как 1+2+9+5=17 - не делится на 3; 2+3+3+5=13 - не делится на 3.
Значит числа a,b,c являются числами 1,3,6 в любом порядке.
Так как число меньше 6000, подходит, например, 1365.
(2х-6)(8х+5)+(3-4х)=55
16х²+10х-48х-30+3-4х-55=0
16х²-42х-82=0
Д=42²+4*16*82=1764+5248=7012
х=(42±2√1753)/32=(21±√1753)16
32/3=10.6%(первое повышение) 10.6*2=21.3%(второе повышение)