Тут ничего сложного нет, на фото все подробно описано
Катеты а=7 и b=24
гипотенуза c=корень( a^2+b^2) = корень( 7^2+24^2) = 25
высота опущенная на гипотенузу h=a*b/c=7*24/25
Н - длина перпендикуляра, опущеного из вершины прямого угла исходного треугольника на плоскость бета
L - длина отрезка в плоскости бета от основания перпендикуляра до гипотенузы
H=корень(h^2-L^2) = корень((7*24/25)^2-<span>(84/25)</span>^2) =
= 7*12/25 * корень(2^2-1^2) =
= 7*12/25 * корень(3)
ΔABC - равнобедренный: AB = AC
∠B = ∠C = 72° (углы при основании BC)
Сумма углов треугольника равна 180° ⇒
∠A = 180° - ∠B - ∠C = 180° - 72° - 72° = 36°
Вписанный угол равен половине дуги, на которую опирается ⇒
Дуга ∪BC = 2*∠A = 2*36° = 72°
Ответ: ∪BC = 72°
Тангенс угла- отношение противолежащего катета к прилежащему. Ответ 5/3