Высоты ромба равны.
В ∆ HBF стороны ВН=BF. ⇒ этот треугольник равнобедренный.
Т.к. угол HBF=60°, углы при его основании HF также равны 60°.⇒
<u>∆ HBF - равносторонний</u>. ВН=ВF=6 см.
Высоты ромба перпендикулярны обеим его противоположным сторонам. ⇒
<em>∠АВF</em>=<em>90°</em>. Поэтому <em>∠АВН</em>=90°-60°=<em>30°</em>
Все стороны ромба равны.
АВ=ВН:cos30°
<em>АВ</em>=6:(√3/2)=<em>4√3</em>
Одна из формул площади ромба
<em>S=h•a</em>⇒
<em>S</em>=6•4√3=<em>24√3 </em>см²
Поскольку АВ=ВС, АД=ДС, и ВД общая сторона, то угол ВАД=углу ВСД
Решение задач 3 и 4 в прикрепленных рисунках.
Вектор в геометрии — класс коллинеарно направленных отрезков.