1) SIn2x = 2SinxCosx
Sin2x = √2Cosx
2SinxCosx - √2Cosx = 0
Cosx(2Sinx - √2) = 0
Cos x = 0 или Sinx = √2/2
x₁ = π/2 + πk, k∈Z
2) 2SinxCosx + √2Sinx = 0
Sinx(2Cosx + √2) = 0
Sinx = 0 или Cosx = -√2/2
x₁ = πk
x₂ = ±3π/4 + 2πk
А) (*)⁵=а³⁰
(*)⁵=(а⁶)⁵
*=а⁶
б) (z*)³=z¹²
(z*)³=(z⁴)³
*=4
в) (*)⁷=b¹⁴
(*)⁷=(b²)⁷
*=b²
г) (p¹²)*=p²⁴
(p¹²)*=(p¹²)²
*=2
7x-4(x-3)=12
7x-4x-12=12
3x-24=0
3x=24
x=8