Центром вписанной окружности является точка пересечения биссектрис, поэтому АО - биссектриса ∠А, ∠МАО = ∠НАО = α/2
В ΔМАО: tg(α/2) = MO/AM ⇒ MO = r•tg(α/2), но OM⊥AB, OK⊥BC, MO = OK = r, поэтому МВКО - квадрат, МВ = ВК = r, AB = AM + BK = r•tg(α/2) + r = r•( tg(α/2) + 1)
B ΔABC: tg(α) = BC/AB ⇒ BC = AB•tg(α) = r•tg(α)•(tg(α/2) + 1)
S = (1/2)•AB•BC = (1/2)•r•( tg(α/2) + 1 )• r•tg(α)•( tg(α/2) + 1 ) = (r²•tg(α)/2)•( (tg(α/2) + 1 )²
Ответ: (r²•tg(α)/2)•( (tg(α/2) + 1 )²
1)
Дано: Найти: М₁М₂-?
Решение: Так как
α и
β - параллельные плоскости, то при пересечении их прямыми
КМ и
КР образуются две пары соответственных углов. Так как соответственные углы равны, то образовавшиеся треугольники
КМ₁Р₁ и
КМ₂Р₂ подобны по двум углам. Составляем отношение сходственных сторон, приняв за х=
М₁М₂:<em><u>Ответ: 10 см</u></em>2)
Дано:Построить: сечение
Построение: 1) Построим плоскость
АМВ, параллельно которой необходимо построить сечение, соединив последовательно отрезки
АМ,
МВ и
ВА.
2) Через точку
К проведем прямые:
КМ₁, параллельную прямой
АМ и
КВ₁, параллельную прямой
АВ, где точки
М₁ и
В₁ лежат на сторонах
DM и
DВ соответственно.
3) Через точки
М₁ и
В₁ проведем прямую
М₁В₁. Получим искомое сечение
КМ₁В₁.3)
Да, верно. Так как параллельные плоскости не имеют общих точек, то и две прямые, лежащие по одной в каждой из этих плоскостей не будут иметь общих точек.
Площадь трапеции равна произведению полусуммы оснований на высоту трапеции: Sabcd = (ВС+AD)*h/2.
Проведем высоту трапеции ВН (h) и среднюю линию трапеции КМ.
Средняя линия трапеции делит боковые стороны и высоту трапеции пополам, значит в треугольнике АВК КМ - медиана, которая делит этот треугольник на два РАВНОВЕЛИКИХ: МКВ и МКА.
Найдем площадь одного из них - площадь Smkb. Она равна половине произведения высоты, опущенной на основание. Пусть основание МК. Высота, опущенная на это основание, равна половине высоты трапеции.
А основание МК - это средняя линия трапеции: (ВС+АD)/2.
Итак: Smkb =(1|2)* [(BC+AD)/2]*h/2= (BC+AD)*h/8.
Как сказано выше, Sabk = 2*Smkb = (ВС+АD)*h/4.
Но это как раз половина площади трапеции! Что и требовалось доказать.
ас=3 корень из 17
Пояснение :т к син б = ас к аб = 1/4/корень из 17 по правилу пифагора подставляем :
(4/корень из 17) в квадрате = ас в квадрате + бс в квадрате (из формулы син знаем что ас=1 , а аб=4/корень из 17)=>выражение приобретает вид :
(4/корень из 17) в квадрате=ас в квадрате +1 в квадрате
(4/корень из 17) в квадрате=ас в квадрате +1 (1 в квадрате =1 )
возводим в квадрат(4/корень из 17) в квадрате:
8/17= ас в квадрате + 1
ас в квадрате = -8/17+17/17 (17/17= 1 )
ас в квадрате =9 /17 т к 17/17 - 8 /17 = 9/17
ас = 3/корень из 17
ответ :ас = 3 /корень из 17