1. У равностороннего треугольника все стороны равны, значит
Ас и db будут параллельными ,т.к. отрезки точкой о делятся пополам ,отсюда ab секущая для этих прямых отсюда нужные нам углы будут накрестлежащими а накрестлежащие углы равны по определению
Пусть A- Начало координат
Ось X- AB
Ось Y - AD
Ось Z - AA1
Координаты точек
С(1;1;0)
B(1;0;0)
D1(0;1;1)
Вектора AC(1;1;0) BD1(-1;1;1)
Скалярное произведение AC * BD1 = -1+1=0 Угол 90 градусов.
1) ΔАСВ подобен ΔЕСF.
Составим пропорцию АВ/АС=ЕF/ЕС. Пусть ЕС=х.
20/10=х/7; 10х=140; х=140/10=14 см. Ответ: 14 см.
2) см. фото ВО=ОD=3 см. ΔКОD. КD²=ОК²+ОD²=64+9=73.
КD=√73 см.
ΔАОD - прямоугольный. АО²=АD²-ОD²=25-9=16. АО=²²4 см.
ΔАОК - прямоугольный. АК²=АО²+ОК²=16+64=80.
АК=√80 см. АК=КС=√80, ВК=КD=√73 см.
Ответ: √73 см, √80 см.
3) Найдем площадь ΔАВС по формуле Герона
S(АВС)=√р(р-а)(р-b)(р-с)=√16·1·3·4=3·8=24 см². р - полупериметр равен 16 . а,b, с - стороны ΔАВС.
ВТ⊥АС. S(АВС)=0,5·АС·ВN=24,
0,5·4·ВN=24.
ВN=24/2=12 см.
ΔВDN. ВD - катет. который лежит против угла 30°, ВD=0,5ВN=12/2=6 см.
Ответ: 6 см.
Т.к. угол BMN=углу BCA , то треугольник MBN подобен треугольнику ABC
=> стороны треугольников соотносятся одинаково
AC/AB=MN/BN
28/21=MN/15
(28*15)/21=MN
MN=20