Треугольник АВС, О-центр вписан.окруж., М-точка касания с гипотенузой АС, СМ=1, АМ=2, Е-точка касания с катетом ВС и К-точка касания с катетом АВ, СЕ=СМ=1 (отрезки, касательных к окружности, проведенных из одной точки), так же АК=АМ=2, ОЕ=ОК= радиусу окружности. ОЕ перпендикулярно к ВС (отрезок, проведенный от центра окружности к точке касания, перпендикю к данной стороне), также ОК перпендик. к ВА. угол АВС-90градусов. ВКОЕ-квадрат, где сторона равна радиусу и обозначим за х, тогда ВА=2+х, ВС=х+1, Ас=2+1=3-гипотенуза
По теореме Пифагора
(х+1)^2+(х+2)^2=3^2
x^2+2x+1+x^2+4x+4=9
2x^2+6x-4=0 сократим на 2
х^2+3x-2=0
дискрим Д=9+8=17
Х1=(-3+корень из 17)/2 (корень из 17 приблиз равен 4,12)
х2=(-3-корень из17)/2 (отрицат. быть не может)
Ответ: радиус равен (-3+корень из 17)/2
Если вы собрались драться, то ты попробуй быть по шустрее него и не проморгай моменты когда можно будет ударить его
Вот по этой формуле раскладуй
П(пи)=3,14
S=24
т.к треугольник равносторонний,то все углы и стороны равны,в треугольникев сумме всего 180 градусов,а в треугольнике 3 стороны,получается по 60 градусов на угол!!!
<em>Сумма углов выпуклого n-угольника и одного из его внешних углов равен 990°. </em><u><em>Найдите </em></u><u><em>n.</em></u>
<em>Внешним углом</em> выпуклого многоугольника при данной вершине называется <u>угол, смежный внутреннему угл</u>у многоугольника при этой вершине. Сумма одного внутреннего и внешнего угла при нем равна развернутому углу, т.е. 180°. Тогда на долю остальных n' = (n-1) углов данного многоугольника приходится 990°-180°=810°. Найдем количество <em>n'</em> остальных углов. 810°:n'=180°(n'-2):n';, откуда n'=6. А с углом. который мы вычли, число углов (и, естественно, сторон) данного многоугольника равно <em>7</em>.
Или: <u>Формула суммы углов</u> выпуклого n-угольника <em>180°(n-2)</em>. Сумма всех <u>внешних углов</u> многоугольника <em>360°</em>. Предположим, что этот многоугольник правильный. Тогда величина внешнего угла 360°:n. Составим уравнение: <em>180°(n-2)+360°/n</em>=<em>990°</em>. Сократим для удобства все члены уравнения на 90 и умножим их на n , после чего соберем все его члены по одну сторону и получим квадратное уравнение <em>2n²-15n+4</em>=<em>0</em>. Корни этого уравнения <em>≈ 7,54</em> и<em> ≈0,25</em>. Число сторон многоугольника не бывает дробным. Пусть n=7. Тогда сумма внутренних углов семиугольника 180°•5=900°, а добавленный к ней внешний угол 990°-900°=90°. <em>Смежный с ним внутренний может быть равен только </em><em>90°.</em> Данный многоугольник не является правильным, его углы могут иметь разную величину, но их <u>сумма будет 900</u>°. ( Например, 6 углов будут по (900°-90°):6=135°, а седьмой равен 90°, а их сумма 6•135°+90°=900°). Ответ: n=7