1)
3(х-4)+2=5х-4
3х-12+2=5х-4
3х-5х=10-4
-2х=6
х = -3
2)
х²-5х=0
х(х-5)=0
х(1)=0; х(2)=5
3)
2х²-х-3 = 0
Д=1+24 = 25 = 5²
х(1) = (1+5)/4 = 6/4 = 3/2 = 1,5
х(2) = (1-5)/4 = -4/4 = -1
4)
х + х/3 = 1/6 | * 6
6x+2x=1
8x=1
x = 1/8
5)
(x-6)/2 + (x+7)/4 = 1 |*4
2(x-6) + (x+7)=4
2x-12+x+7 = 4
3x = 5+4
3x=9
x=3
6)
3x²-27 = 0 | :3
x² - 9 = 0
(x-3)(x+3)=0
x(1) = 3; x(2) = -3
...............................
Точка пересечения графика функции с осью координат Y:<span>График пересекает ось Y, когда x равняется 0: подставляем x=0
в x^3+3*x-5.
Результат: y=-5. Точка: (0, -5)</span>Точки пересечения графика функции с осью координат X:<span>График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^3+3*x-5 = 0 Решаем это уравнение и его корни будут точками пересечения с X:
x=-(-5/2 + sqrt(29)/2)**(1/3) + (-5/2 + sqrt(29)/2)**(-1/3)≈1,15417. Точка: (1,15417, 0)</span>Экстремумы функции:<span>Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=3*x^2 + 3=0
Решаем это уравнение и его корни будут экстремумами:
x = </span>√-1 - нет решения и нет экстремумов.<span>
</span>Точки перегибов графика функции:<span>Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=6*x=0
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=0. Точка: (0, -5)</span>Интервалы выпуклости, вогнутости:<span>Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [0, oo)Выпуклая на промежутках: (-oo, 0]</span>Вертикальные асимптотыНетуГоризонтальные асимптоты графика функции:<span>Горизонтальную асимптоту найдем с помощью предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^3+3*x-5, x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim x^3+3*x-5, x->-oo = -oo, значит горизонтальной асимптоты слева не существует</span>Наклонные асимптоты графика функции:<span>Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^3+3*x-5/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim x^3+3*x-5/x, x->-oo = oo, значит наклонной асимптоты слева не существует</span>Четность и нечетность функции:<span>Проверим функци четна или нечетна с помощью соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^3+3*x-5 = -x^3 - 3*x - 5 - Нетx^3+3*x-5 = -(-x^3 - 3*x - 5) - Нетзначит, функция не является ни четной ни нечетной</span>