6(1 - sin^2x) + sinx - 5 = 0
6 - 6sin^2x + sinx - 5 = 0
- 6sin^2x + sinx + 1 = 0 /:(-1)
6sin^2x - sinx - 1 = 0
Пусть sinx = t, |t| ≤ 1
6t^2 - t - 1 = 0
D = 1 + 24 = 25
t1 = ( 1 + 5)/12 = 6/12 = 1/2
t2 = ( 1 - 5)/12 = - 4/12 = - 1/3
Обратная замена
sinx = 1/2
x1 = pi/6 + 2pik, k ∈ Z
x2 = 5pi/6 + 2pik, k ∈ Z
sinx = - 1/3
x3 = - arcsin(1/3) + 2pik , k∈ Z
x4 = pi + arcsin(1/3) + 2pik, k ∈Z
х =5 6 0 -3 -9 -5 -6 1,2 -1,2
√х² =5 6 0 3 9 5 6 1,2 1,2
так как √5²=√25=5
√6²=√36=6; √0²=√0=0; √(-3)²=√9=3; √(-9)²=√81=9 √(-6)²=√36=6 и т д
Уравнение не имеет корней не только при к=10.
(z-8)z=k(k-10)
z^2-8z-k^2-10k=0
D=64-4(-k^2+10k)=4k^2-40k+64
Если дискриминант меньше 0, то данное уравнение не имеет корней, поэтому переходим к решению неравенства:
4k^2-40k+64<0
k^2-10k+16=0
D=100-4*16=36
k1=(10-6)/2=2
k2=(10+6)/2=8
Двумя точками числовая ось разбивается на три интервала. Методом интервалов определяем, что данное уравнение не имеет решений тогда, когда К принадлежит интервалу (2;8).
Значит все натуральные значения К, при которых уравнение не имеет корней:
3; 4; 5; 6; 7 и 10 (так как при 10 обращается в ноль знаменатель первой дроби из условия).
Сумма всех этих натуральных чисел равна 35.