D₁- первая диагональ трапеции
D₂ - вторая диагональ трапеции
По свойству равнобедренной трапеции D₁=D₂=D.
S= (1/2) * D₁*D₂*sin90⁰=(1/2) * D₁*D₁*1=(1/2)*D².
1) Треугольник, образованный пересечением диагоналей и малой стороной основания трапеции 8 см:
- этот треугольник равнобедренный;
- а - катеты этого Δ, они равны между собой по св-ву равнобедренного Δ;
- гипотенуза равна 8 см;
- по т. Пифагора:
a²+a²=8²
2a²=64
a²=32
a=√32
a=4√2
Треугольник, образованный пересечением диагоналями трапеции и большей стороной трапеции 12 см:
- этот треугольник - равнобедренный;
- b - катеты этого Δ, они равны по св-ву равнобедренного Δ;
- 12 см - гипотенуза;
- по т. Пифагора:
b²+b²=12²
2b²=144
b²=72
b=√72
b=6√2
D=a+b=4√2+6√2=10√2
S=(1/2)*(10√2)²=(1/2)*(100*2)=100 (см²)
Ответ: 100 см².
- геометрическая прогрессия.
Дано:
Найти:
Решение:
Ответ:
.
Условие бесконечного числа решений (совпадения прямых, которые выражаются алгебраически как уравнения системы) такое:
4/2=a/-3 ⇒ a=-6 при этом обязательно должно быть 4/2=10/5=-6/-3, что выполняется.
Мы получили первое уравнение 4х-6у=10 если обе стороны поделить на 2 то получим 2-е уравнение 2х-3у=5, то есть две прямые совпали.
Ответ: -6