Введем дополнительное обозначение: вершину угла 102° обозначим В. Прямые АЕ и ВF пересекаются прямой АВ, при этом сумма внутренних односторонних углов ∠А+∠В =78°+102°=180°. <em>Если при пересечении двух прямых третьей секущей сумма односторонних углов равна 180°, то прямые параллельны. ⇒</em>
АЕ║BF Тогда угол ЕАD=углу ADB=48° (накрестлежащие). Угол АDF =180°-48°=132° (как смежный углу АDB). Биссектриса DE делит его на два равных: ∠ADE=∠FDE=132°:2=66°. Угол АЕD=∠EDF=66°( накрестлежащие). Углы треугольника АЕD содержат 48°; 66°; 66°. <u>Проверка</u>:48°+66°+66°=180° - соответствует сумме углов треугольника.
Начерти трапецию АВСД. Верхнее основание АВ, нижнее основание ДС.
Из вершин А и В опусти высоты АЕ и ВМ. Высоты у трапеции равны, АЕ = ВМ.
Тогда ЕМ = АВ = 6см. ДЕ + МС = 27 - 6 = 21(см)
пусть ДЕ = х см, тогда МС = (21 - х)см
В треугольнике АДЕ по теореме Пифагора АЕ^2 = 13^2 - x^2 = 169 - x^2.
в треугольнике ВМС по теореме Пифагора ВМ^2 = 20^2 - (21 - x)^2 = 400 - (21 - x)^2
Т.к.АЕ = ВМ, то получим уравнение:
169 - x^2 = 400 - (21 - x)^2
169 - x^2 = 400 - 441 + 42х - х^2
169 = -41 + 42x
42х = 169 + 41
42х = 210
х = 5
ДЕ = 5см
По теореме Пифагора в треугольнике АДЕ найдем АЕ.
АЕ^2 = 13^2 - 5^2 =169 - 25 = 144, тогда АЕ = корень из 144 = (12)см
Т.е. мы нашли высоту трапеции АЕ.
S = (АВ+ДС)/2 * АЕ
S= (6+27)/2 *12 = 198(кв.см)
ответ: 198 кв.см. УДАЧИ!!
Решение в приложенном рисунке.
<с = 35°, т.к. угол вписанный
<а = 35°, т.к. треугольник равнобедренный
<б = 110°, т.к. 180-70 = 110
Ас поделить на синус поскольку по теореме так ,