1. См графическое решение.
Строим график у=2х+5х³ - кубическая парабола возрастающая на (-∞;∞)
и график у=х⁸-4х⁴+4
Находим y`=8x⁷-16x³
y`=0
8x⁷-16x³=0
8x³(x⁴-2)=0
x=0 x= - √(√2) x=√(√2) - точки возможных экстремумов
х= - √(√2) и х=√(√2) - точки минимума, производная при переходе через эти точки меняет знак с - на +.
у(-√(√2))=у(√(√2))=0
х=0- точка максимума, производная при переходе через точку меняет знак с + на -.
у(0)=4
Одна точка пересечения
х≈0,75
у=3
Найдем абсциссы точек пересечения графика у=х⁸-4х⁴+4 с прямой у=3.
Решим уравнение:
х⁸-4х⁴+4=3
Замена переменной
х⁴=t
t²-4t+1=0
D=16-4=12
t=(4-2√3)/2 =2-√3 или t=2+√3
x⁴=2-√3 или х⁴=2+√3
х²=√(2-√3) х₂=√(2+√3)
х₁=-√(√(√(2-√3))) или х₂=√(√(√(2-√3))) или х₃=-√(√(√(2+√3))) или х₄=√(√(√(2+√3)))
См. рисунок.
х₂=√(√(√2(-√3))) - корень уравнения.
О т в е т.√(√(√(2-√3)))=
2.
3²⁵⁶-1=(3¹²⁸)²-1²=(3¹²⁸+1)(3¹²⁸-1)=(3¹²⁸+1)·((3⁶⁴)²-1²)=
(3¹²⁸+1)·(3⁶⁴+1)·(3⁶⁴-1)=...=
=(3¹²⁸+1)(3⁶⁴+1)(3³²+1)(3¹⁶+1)(3⁸+1)(3⁴+1)(3²+1)(3²-1)=
=(3¹²⁸+1)(3⁶⁴+1)(3³²+1)(3¹⁶+1)(3⁸+1)(3⁴+1)(3²+1)·8
Уравнение примет вид:
8·(3²+1)·(3⁴+1)·(3⁸+1)·(3¹⁶+1)·(3³²+1)·(3⁶⁴+1)·(3¹²⁸+1)=
=(3¹²⁸+1)(3⁶⁴+1)(3³²+1)(3¹⁶+1)(3⁸+1)(3⁴+1)(3²+1)·8
имеет корень х=1
О т в е т. х=1