1)x=y-2
y-2-2y=4
-y=6
y=-6;
x=-8
2)y=x
3x+x=8
4x=8
x=2
y=2
Уравнение с полиномом третьей степени всегда имеет точно три корня. Либо
они все три действительные, либо один действительный, а два других
комплексно-сопряженные... Поэтому ответ - никогда! Но допустим, что вопрос сформулирован некорректно, и имелось в виду, что два из трех действительных корней совпадают по значению. Проанализируем этот вариант.
Известно, что для кубического уравнения вида
существует понятие дискриминанта, который вычисляется по следующей формуле:
В нашем случае A=1, B=0, C=-3, D=2-a, тогда
Подставив значения получим
условием совпадения двух корней является условие
, что приводит нас к уравнению 27(4-(2-a)²)=0 ⇒ 4-(2-a)²=0; 4=(2-a)²
Вот полное разложение на множители.
Ответ:
3
Объяснение:
Короче че то тут напишу А-то этот браинли против влвовооаоаоалп