Куб натурального числа n можно представить в виде n слагаемых, образующих арифметическую прогрессию с разностью 2.
<u>Доказательство</u>:
Если n — число нечётное:
Пусть средний член равен n². Тогда сумма членов этой прогрессии равна n² + n² - 2 + n² + 2 + ... = n² + n² + n² + ... (n раз) = n² * n = n³.
Если n — число чётное:
Пусть средние члены (по счёту n/2 и n/2 + 1) равны n²-1 и n²+1. Сумма членов прогрессии равна: n² - 1 + n² + 1 + n² - 3 + n² + 3 + ... = n² + n² + n² + ... (n раз) = n² * n = n³.
Во всех возможных случаях мы смогли представить куб натурального числа в виде n слагаемых, что и требовалось доказать.
124 ÷ (x - 4) = 31
31x - 124 = 124
31x = 124 + 124
31x = 248
x = 248 ÷ 31
x = 8