Чтобы ответить на вопрос задачи, нужно знать длины сторон основания призмы и её высоту.
Объём призмы измеряют произведением её высоты на площадь основания.
V=S•H⇒
Н=V:S
S прямоуг. тр-ка =a•b:2, где a и b- катеты.
<span>Т.к. острые углы основания =45°, то этот треугольник - равнобедренный, второй катет равен 6 см, а гипотенуза
</span>с=√(а²+а²)=√72=6√2
S=6•6:2=18 (см²)⇒
Н==108:18=6 (см)
<em>Площадь полной поверхности призмы - сумма площадей двух оснований и площади боковой поверхности</em>.
Площадь боковой поверхности - сумма площадей боковых граней призмы.
Их можно найти по отдельности или умножив высоту на периметр основания:
P=(6+6+6√2)=6(2+√2)
S(бок)=H*P=6•6•(2+√2)=36•(2+√2)
S (полн)=2•18+36•(2+√2)=36•(3+√2)
10 квадратов 1*1 см - площадь 10 см2
Периметр = 16 см - проверьте...
14х = 54,4 - 9,2 - 2,5
14х = 42,7
х = 42,7:14
х=3,05.