1) параллелограмм АВСД: АВ||СД, ВС||АД
AN⊥ABC и KC⊥AВC
Т.к. если прямая перпендикулярна к плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости (AN⊥AC и КС⊥АС)
Плоскость КВС⊥плоскости АВС, т.к. плоскость КВС проходит через прямую КС, перпендикулярную к АВС (согласно теореме: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны).
Аналогично плоскость ANД⊥плоскости АВС, т.к. плоскость ANД проходит через прямую AN, перпендикулярную к АВС.
Т.к. плоскости ANД и КВС, перпендикулярные к одной прямой АС, значит они параллельны.
2) Прямоугольный ΔАВС (∠В прямой)
Из точки S опустим перпендикуляр SO на плоскость АВС.
По условию точка S равноудалена от вершин прямоугольного треугольника и не лежит в плоскости этого треугольника, значит наклонные SA=SB=SC , а следовательно и их проекции на плоскость АВС ОА=ОВ=ОС. Значит О - центр описанной окружности около ΔАВС.
Т.к. в прямоугольном треугольнике центром описанной окружности является середина гипотенузы М, то значит точки О и М совпадают, тогда SM перпендикулярна плоскости АВС
Расстояние от точки О до прямой СД (назовем этот отрезок ОЕ) является высотой треугольника СОД. Площадь треугольника СОД=(СД*ОЕ)/2=(12*5)/2=30 см². Так как треугольники, образованные боковыми сторонами и диагоналями трапеции, имеют равные площади, то площадь треугольника S(aob)=S(cod)=30 см²
радиус описанной окружности=сторона*корень2/2=20*корень2/2=10*корень2
В С
А К Д
Рассматриваем углы при перечении сторон ВС и АД (параллельны) биссектрисой: ВК: угол СВК =углу ВКА - внутренние накрест лежащие, а угол СВК=углу АВК, так как по условию задачи ВК биссектрисса. Имеем равнобедренный треугольник с основанием ВК и прилежащими к нему равными углами АВК и ВКА. Отсюда АК=АВ. АК=1/2 АД=1/2 *16=8см.
На эту сторону опускается большая высота. Площадь 8*9=72
Один из катетов 3 см, т.к лежит напротив угла в 30°
Дальше по теореме Пифагора