Y=15+2X+X2,
Y=X2+2X+15, значит график функции возрастает, т.к коэффициент при х2 положительный
Ищем производную:
y'=12-3*x приравниваем к нулю и решаем уравнение:
12-3х=0
х=4.
Рисуем прямую, отмечаем на ней 4. далее подставляем числа из полученных промежутков в функцию. там, где получается больше нуля, функция возрастает, а где меньше нуля - убывает.
ОТВЕТ: функция возрастает от минус бесконечности до 4, убывает от 4 до бесконечности
по формулам синуса и косинуса суммы и разности двух аргументов имеем:
cos(5П/8)*cos(3П/8)+sin(5П/8)*sin(3П/8)=сos(5П/8-3П/8)=cos(П/4)=<u>корень2/2</u>
sin(2П/15)*cos(П/5)+cos(2П/15)*sin(П/5)=sin(2П/15+П/5)=sin(2П/15+3П/15)=sin(5П/15)=sin(П/3)=<u>корень3/2</u>
cos(П/12)*cos(П/4)-sin(П/12)*sin(П/4)=сos(П/12+П/4)=сos(П/12+3П/12)=сos(4П/12)=сos(П/3)=<u>1/2</u>
sin(П/12)*cos(П/4)-cos(П/12)*sin(П/4)=sin(П/12-П/4)=sin(П/12-3П/12)=sin(-2П/12)=sin(-П/6)=-sin(П/6)=<u>-1/2</u>
Разложим на множители 24:
Чтобы число делилось на 24, оно должно одновременно делиться на 8 и на 3.
Чтобы число делилось на 8, то число, составленное из трёх последних цифр, должно делиться на 8. Простым перебором найдём, что таким числом является только 544. Значит, последние три цифры — 544.
Чтобы число делилось на 3, сумма его цифр должна делиться на 3. Сумма последних трёх цифр равна . Вариантов первых трёх цифр четыре: 445, 455, 444, 555 (порядок цифр здесь уже не важен). Проверим каждый из вариантов:
Видим, что сумма цифр делится на 3, если первые три цифры 455 (в любом порядке). Тогда их можно расположить в таком порядке: либо 455, либо 545, либо 554.
Ответ. Подходят три числа: