1-в
2-а
3. В треугольнике АВС известен угол и противолежащий катет, поэтому общая сторона:
.
В треугольнике АВД АВ гипотенуза, а нужно найти противолежащий катет, поэтому:
.
4. Меньшая боковая сторона является высотой. Найдем большее основание. Острый угол равен 60. Прилежащий катет 6. Тогда большее основание 12. Находим площадь трапеции:
Площадь трапеции равна половине произведения ее оснований на высоту.
Проведем высоты BH и СН1, HBCH1 - прямоугольник ⇒ HH1=BC = 13 см
Δ ABH = ΔDCH1 по стороне и двум прилежащим к ней углам (AB=CD как боковые стороны равнобедренной трапеции, ∠A =∠D по условию, ∠H1CD= ∠HBA по сумме углов треугольника) ⇒
AH=H1D = (27-13)/2=7 см
в прямоугольном Δ ABH ∠ ABH = 90°-45° =45° (так как сумма острых углов прямоугольного треугольника 90°) ⇒ Δ ABH - равнобедренный ⇒
BH=AH=7 см
S (ABCD)=
*(27+13) *7=20*7=140 см²
Ответ: 140 см²
1) Пусть дана равнобедренная трапеция АВСД (АД - большее основание, ВС -меньшее). Тогда по условию разность углов С и А равна 36. Но угол С = угол В (равнобед).
Значит В-А=36. По свойству односторонних углов А+В=180. Решаем систему
Больший угол равен 108.
2) По теореме косинусов 25+9-2*5*3*(-0,5)=49.
Значит, АС=7.
3) Рисунок к задаче во вложении. Извиняюсь за качество - рисовал на планшете.
Угол АВД=69-вписанный равен половине дуги АД, дуга АД = 2*69=138.
Угол САД=67-вписанный равен половине дуги СД, дуга СД = 2*67=134.
Угол АВС-вписанный равен половине дуги АС=АД+ДС, дуга АС =138+134=272.
Значит, угол АВС=272:2=136.
Рассм. тр. с катетами а и в, гипотенузой с и острым углом альфа, лежащим против катета а. Т.к. синус альфа рвен отношению катета а к гипотенузе с, то катет а равен с*синус альфа. По теореме Пифагора в^2=c^2-c^2*sin альфа=c^2*cos^2альфа.
Площадь тр. равна половине произведения двух его сторон на синус угла между ними, значит
S=(c^2*cosальфа*sin альфа)/2
1) KM=DJ, MU=JG, KU=DG, (суть в том что два этих треугольника равны по длине сторон,но повёрнуты в разные стораны, надо найти одинаковые стораны на 2-ух треугольниках) , то ∧KMU=∧DJG по первому признаку.