(геометрическая модель вероятности)
Представим множество возможных исходов как квадрат 60x60 на плоскости Oxy (0 <= x <= 60, 0 <= y <= 60), x - время, в которое на встречу пришел один человек, y - другой. "Отметим" на нем множество благоприятных исходов, когда встреча состоялась: ему соответствует область, для которой выполняется условие |x - y| <= 18 (они пришли на место встречи с разницей во времени <= 18 минут).
Границы области - прямые y = x + 18 и y = x - 18. Отношение площади фигуры, ограниченной этими прямыми, ко всей площади квадрата - и есть вероятность удачной встречи.
Площадь фигуры удобно искать, вычитая из площади квадрата площади треугольников в левом-верхнем и правом-нижнем углах.
60^2 - 1/2 (60-18)^2 - 1/2 (60-18)^2 = 3600 - 1764 = 1836
Искомая вероятность = 1836 / 3600 = 0,51
После упрощения получится -3
Исходное выражение = ((5m+2)^2 - (5m-2)^2)/(5m-2)(5m+2) * (12 - 75m^2)/(20m) = (20m * (-3) * (25m^2 - 4))/((25m^2 - 4) * 20m) = -3
Квадратичной функцией называется функция вида y=ax2+bx+c, где a,b,c - числа, причем a≠0.
В данном случае это 1.
1) а=2x² b=-3x c=1
2) b=2x c=4
3) a=1/x²
4) a=3x² b=2x
5) a=x² c=-3
6) a=5x²
Ответ: 621.
Объяснение:
Разность между n+1-м и n-ным членами a[n+1]-a[n]=3*(n+1)+6-(3*n+6)=3=const, поэтому данная последовательность является арифметической прогрессией. Тогда искомая сумма S18=18*(a[1]+a[18])/2.
Подставляя в формулу для a[n] значения n=1 и n=18, находим a[1]=3*1+6=9, a[18]=3*18+6=60. Отсюда S18=18*(9+60)/2=621.
3) Противоположные боковые ребра образуют треугольник с диагональю основания, которая равна √2*√2=2= бок.ребру, значит, этот треугольник правильный, и любой угол в нем - 60°.
4) Рассмотрим диагональное сечение пирамиды. Так как высота вдвое меньше бокового ребра, угол при основании пирамиды будет равен 30° по теореме о гипотенузе, равной двум катетам. Все сечение - равнобедренный треугольник, значит, угол при вершине равен 180°-2*30°=120°.
5) Апофема (высота боковой грани) и боковое ребро дают прямоугольный треугольник с половиной ребра основания => половина ребра основания по теореме Пифагора = 1. Рассмотрим плоскость, в которой лежат апофема и высота пирамиды. Расстояние между основанием апофемы и основанием высоты равно половине ребра основания и равно 1. Значит, косинус угла между этой половиной и апофемой (а это и есть угол между боковой гранью и основанием) равен 1/2 (апофема равна 2), значит, угол равен 60°.