Решение.
Угол CAD и угол CBD — вписанные углы, опирающиеся на одну дугу, а значит, они равны 33°. Следовательно: угол ABD= угол ABC-угол СВD=111-33=78
Ответ: 78
S = ab * sin a = 24 Ответ: 24
Пусть основания x, 3x.
Трапеция описана, тогда суммы длин противоположных сторон равны, сумма боковых сторон x+3x=4x.
Трапеция равнобедренная, тогда каждая боковая сторона 4x/2=2x.
Опустим высоту из вершины к большему основанию. Получим прямоугольный треугольник с катетом x и гипотенузой 2x.
Высоту в этом треугольнике можно найти по теореме Пифагора, h=x*sqrt(2^2-1^2)=x*sqrt(3)
Площадь трапеции S = полусумме оснований * высота = (x + 3x)/2 * xsqrt(3) = 2x^2 * sqrt(3)
S = 2x^2*sqrt(3)=sqrt(3); 2x^2=1; x=1/sqrt(2)
Боковая сторона = 2x = 2/sqrt(2) = sqrt(2)
Bc параллельно АД
а параллельно в
все это потому что есть накрест лежащие углы и они равны
S=√p(p-a)(p-b)(p-c)-Формула герона
p=(a+b+c)/2- формула полупериметра