Имеем два равных прямоугольных треугольника.
Они равны по второму признаку. Гипотенузы ,катет (высота трапеции) и угол между ними - равны
В прямоугольном треугольнике, у которого углы равны по 45 градусов- катеты равны.
(острый угол трапеции является острым угол прямоугольного треугольника).
Это означает, что отрезки HA=H1D равны катету СН1=ВН=3
Теперь мы можем найти боковые стороны, и основания.
По теореме Пифагора квадрат длинны гипотенузы равен сумме квадратов двух его катетов CD^2=AB^2=3^2+3^2 =18
CD=AB=
=
Теперь найдем основания.
Пусть отрезок ВС=х тогда АD=x+3+3=x+6
Тк из точек B и C опущены перпендикуляры
Теперь нужно решить несложное уравнение.
Длинна средней линии трапеции равна полусумме двух её оснований:
8=((x+x+6):2)
16=2х+6
10=2х
х=5
Площадь.
По одной из формул площадь трапеции равна высоте этой трапеции умноженной на среднюю линию
те Sabcd=3*8=24
AOB = AOE + EOB
а) AOB = 44° + 77° = 121°
б) AOB = 12°37' + 108°25' = 120°62' = 121°2'
Если все эти хорды пересекаются в одной точке. Следует что произведение одной части отрезка хорды на другую равны другой части хорды. Отсюда следует что хорды равны между собой , следовательно они симметрично расположены от центра . При пересечений всех трех хорд , получим правильный треугольник . Со сторонами равными
. Проведем сам радиус , центр данного треугольника будет расположен относительно всех треух вершин равноудален , а радиус вписанной окружности в данный правильный треугольник будет равен
Откуда получим сам радиус равным
Рассмотрим треугольник АВС - равнобедренный, в равнобедренном треугольнике АD-биссектрисса, медиана и высота, ВD=DС=15 см,
рассмотрим треугольник АВD - прямоугольный, по т. Пифагора АD=20cм
СД = √(АД +ВД)= √(16+9)=√25=5
АС = √(5² + 9²)= √106
ВС = √(16² + 5²)= √281