1. Треугольник АВС прямоугольный, т.к. ∠АСВ прямой, и равнобедренный т.к. ∠АВС=45°, а сумма углов треугольника равна 180°, то 180°-90°-45°=45°, то есть ∠ВАС тоже 45°. Высота CD, опущенная к основанию АВ делит его пополам (т.к. треугольник АВС равнобедренный), т.е. АD=DB. Треугольник CDB тоже равнобедренный, т.к. углы при основании у него равны ∠DBC=∠DCB=45°, значит CD=DB=8, а следовательно, т.к. AD=DB, то AB=8+8=16/
2. Для начала найдём ВЕ. Так как ∠ВЕС=60° ∠ВСЕ=90°, то ∠СВЕ будет равен 30°. Известно, что катет лежащий против угла 30° равен половине гипотенузы, следовательно ВЕ=2*ЕС=2*7=14. Теперь рассмотрим треугольник АВЕ, он равнобедренный так как у него ∠ВЕА=120° (как смежный с ∠ВЕС 180°-60°=120°), а ∠АВЕ=30°, значит АЕ=ВЕ=14.
3. Треугольник BAD равнобедренный по условию (AB=AD=7) значит высота АС является биссектрисой и медианой, следовательно ВС=СD, отсюда BD=BC+CD=3,5+3,5=7. Оказалось что треугольник BAD - равносторонний, а углы равностороннего треугольника равны 60°. Значит ∠В=60°. Так как АС - высота то ∠С=90°.
Пусть AB=AC, тогда медиана AD является и высотой
Рассмотри м тр-к ABD. Положим AB=AC=x; BC=42-2x; BD=1/2(BC)=21-x
По теореме Пифагора: AB^2=BD^2+AD^2
x^2=(21-x)^2+49⇒x^2=441-42x+x^2+49⇒42x=490⇒x=35/3
<span>AB=AC=35/3; BC=42-2*(35/3)=42-70/3=56/3</span>
Ответ:
69°
Объяснение:
Сумма углов треугольника составляет 180 градусов. Поэтому
180-(44+67)=69°
Это задание Б , если что пиши , попробую а решить скину в комментарии .