3.
a=x
b=4x
P(прям)=60см
P(равновелик. кв)-?
Р(прям)=2(a+b)
60=2(x+4x)
60=2*5x
10x=60
x=6 ⇒ a=6 см, b=24см
S(прям)=a*b = 6*24=144 см²
S(кв)=a² ⇒ a=√S
a=√144=12 см
P(кв)=4*a = 4*12=48 см
4.
a=10 см (мен. основание)
b=22 см (бол. основание)
с=d=10 см (бок. стороны)
S(трап)-?
S=1/2*(a+b)*h
высоты делать трап. на прямоугольник, и два равных прямоугольных треугольника (с гипотенузой 10 см, и меньшим катетом (22-10)/2=6 см)
по т. Пифагора: h=√10²-6²=√64=8 см
S=1/2*(10+22)*8=1/2*32*8=128 см²
5.
с=8 см
a=b=5 см
S(тр) -?
Р(тр) - ?
P=a+b+c=5+5+8=18 см
S=a*h
Медиана равнобед. тр. является и высотой и делит его на два равных прямоугольных тр-ка (гипотенуза 5 см, мен. катет 4 см)
По т. Пифагора h=√5²-4²=√9=3 см
S=8*3=24 см²
6.
см. предыдущую задачу S=24 см²
7.
d1=24 см
d2=10 см
Р(ромб)-?
S (ромб)-?
S=(d1*d2)/2
S=(24*10)/2=120см²
P=4√(d1/2)²+(d2/2)²
P=4√(24/2)²+(10/2)²=4√12²+5²=4√169=4*13=52 см
8.
a=12 см
с=20 см
S(прям. тр)-?
P(прям. тр)-?
По т. Пифагора: b=√20²-12²=√256=16 см
P=a+b+с
P=12+16+20=48 см
S=1/2ab
S=1/2*16*12=1/2*192=96 см²
9.
a=6 см
α = 30⁰
S(ромб)-?
S=a*2Sinα
S=6*2Sin30=6 см²
Узнаем длины сторон треугольника через координаты концов отрезков.
Предположим, что ∆АВС - прямоугольный. Тогда его большая сторона АВ=5 может стать гипотенузой. По обратной теореме Пифагора АВ²=ВС²+АС². Подставим числа:
5²=4²+3²
25=16+9
25=25 - верное равенство.
Значит, ∆АВС - прямоугольный с прямым углом С.
Его площадь равна половине произведения катетов СА и СВ.
S=0.5*4*3=6.
Соединим точку K с O. Мы получим треугольник KOM - прямоугольный. KO является гипотенузой, а OM катетом. Гипотенуза не может быть меньше катета (Большая сторона лежит напротив большего угла). Тут ошибка в условии.
Прямая параллельная этим прямым равноудаленная от каждой из них, между параллельными прямыми (середина растояния)