2+3=5 частей это АД
2 части это АВ
7 частей сумма АВ+АД
42/2=21
21/7=3
АД=ВС=3*5=15
АВ=СД=6
8+10+12=30 см периметр
8*10*12:2=480 см площадь
Пусть: AM = a, MN = b, угол BAM = α, MBN = β.
Тогда очевидно: угол ABM = α, ABC = 2α+β = 3/5π (угол правильного пятиугольника)
Из ΔABM угол AMB = π - 2α
из ΔBMN (тоже равнобедренного) угол при основании BMN = (π-β)/2
При этом углы AMB и BMN смежные и равны π.
Итого:
2α+β = 3/5π
π - 2α + (π-β)/2 = π
Из этих двух равенств β = π/5, а если потом подставить в первое, то и α = π/5.
По теореме Косинусов из ΔBMN
b² = a² + a² - 2 a · a · cos β
b² = 2 a² (1- cos β)
Делим все на b²
1 = 2 a² / b² · (1- cos β)
1/ 2 / ( 1- cos β) = a² / b²
ну и отношение a/b = 1/ √ ( 2 · ( 1- cos π/5) )