Т. к. дана прав. тр. пирамида, то основанием ее высоты является точка пересечения биссектрис р\стор. треуг. (они же медианы и высоты)
<span>По свойству медиан они точкой пересечения делятся в отношении 2:1, считая от вершины треугольника. Получаем 4 и 2 (=6) </span>
<span>4*4-2*2=12 </span>
<span>корень из 12 - это половина стороны основания, вся сторона - 4корень из3 </span>
<span>площадь основания (16*3корень из 3)\4=12 корней из3 </span>
<span>используя угол в 60 находим высоту пирамиды (можно через синус) 4корень из3 </span>
<span>подставляя все в формулу получаем объем 48</span>
В трапеции авсд ав=сд, ад=20, ВС=10, так как ВС равно ад минус отрезки, которые отделяют
высоты от стороны ад , которые равны 5 так как трапеции равнобедренная
AB=CD,BC=AD,AC=7см,AD=6см,AB=4см
9. в треугольнике ВСМ СМ-катет, лежащий напротив угла 30град, значит гипотенуза ВМ равна 3*2=6, катет ВС равен корень квадратный из 6*6-3*3=25 или 5.
В треугольнике ВСД ВС - катет напротив угла 30град, тогда гипотенуза 5*2=10см, а катет СД равен корню квадратному из 10*10-5*5=75 или 5V3
6. исходить из формулы а=V(b^2+c^2-2bc*cos угла альфа) подставить
V-корень квадратный, ^2-во второй степени
15+18=33см
м___15______n_______18____k
если мн= 15, если нк = 18,то мы прибавляем их и находим длину прямой